为了在高移动性虚拟环境中实现柔软物体的高富度触觉渲染,我们提出了一种新颖的触觉显示dandeliontouch。一群无人机将触觉执行器传递给用户的指尖。 DandelionTouch的用户能够在不受设备工作区域限制的大空间中体验触觉反馈。重要的是,在与虚拟物体的长时间互动中,他们不会经历肌肉疲劳。手动跟踪和群控制算法允许用手动运动引导群,并避免在编队内部发生冲突。在这项研究中,研究了群体之间的阻抗连接的几种拓扑结构。该实验在实时在正方形轨迹上执行了一个遵循的实验,该实验表明,在恒星拓扑中连接的无人机执行了平均位置误差较低的轨迹(与其他阻抗拓扑相比,RMSE降低了20.6 \%与潜在的基于现场的群体控制相比,为40.9 \%。在所有具有阻抗行为的地层中,无人机的达到的速度比通过潜在场算法控制的群体高28%。此外,在与7名参与者的用户研究中评估了几种纤维骨架模式的感知。该研究表明,提议的时间延迟和频率调制的组合使用户可以同时成功识别VR中的表面特性和运动方向(平均识别率为70 \%,最大为93 \%)。 DandelionTouch建议在VR系统中提出一种新型的触觉反馈,无需手持或可穿戴界面。
translated by 谷歌翻译
移动机器人和无人机的异构团队在对环境的自主探索方面提供了可观的好处。然而,尽管广泛讨论了此类系统的联合勘探方案,但它们仍未对无人机对接过程中外部条件变化和群体断层的适应性低。当一个代理商失去其位置信号时,我们提出了一种基于视觉的无人机群对接系统,以在移动平台上稳健地着陆。拟议的蜂鹰系统依靠基于视觉的检测来进行移动平台跟踪和导航其代理。群的每架无人机都带有RGB摄像头和APRILTAG3 QR代码标记。 Swarmhawk可以在两种操作模式之间切换,在全球无人机本地化的情况下充当均匀的群,或者在一个无人机或全球本地化故障中出现相机故障的情况下,将领导者的无人机指向其邻居。进行了两项实验,以通过静态和移动平台在全球和本地定位下评估Swarmhawk的性能。实验结果表明,静态移动平台上的群体着陆任务具有足够的准确性(均匀地层的4.2 cm误差为4.2厘米,领导者 - 追随者形成中的1.9厘米)和移动平台(同质地层中的6.9厘米和4.7 cm的误差为6.9 cm,在4.7 cm中的误差领导者追随者组)。此外,无人机在领导者追随者组中沿着复杂的轨迹(平均误差为19.4 cm)移动的平台上显示出良好的降落。拟议的蜂鹰技术可以潜在地应用于各种群情景中,包括复杂的环境勘探,检查和无人机交付。
translated by 谷歌翻译
该论文着重于无人机的异质群,以实现移动机器人上层的动态着陆。科学家尚未实现这项具有挑战性的任务。关键技术是,我们没有用计算机视觉来促进无人机群的每个代理,这大大增加了有效载荷并缩短飞行时间,而是建议在领导者无人机上仅安装一台摄像头。追随者无人机从无人机中接收命令,并保持无冲突的轨迹。实验结果表明,群体降落在静态移动平台上(4.48厘米的RMSE)上很高。 RMSE群落在移动平台上的降落,最大速度为1.0 m/s和1.5 m/s,分别为8.76厘米和8.98厘米。拟议的蜂群技术将允许蜂群的省时降落,以进一步充电。这将使可以在救援操作,检查和维护,自主仓库库存,货物交付等方面实现多代理机器人系统的自我维护操作。
translated by 谷歌翻译
The performance of the Deep Learning (DL) models depends on the quality of labels. In some areas, the involvement of human annotators may lead to noise in the data. When these corrupted labels are blindly regarded as the ground truth (GT), DL models suffer from performance deficiency. This paper presents a method that aims to learn a confident model in the presence of noisy labels. This is done in conjunction with estimating the uncertainty of multiple annotators. We robustly estimate the predictions given only the noisy labels by adding entropy or information-based regularizer to the classifier network. We conduct our experiments on a noisy version of MNIST, CIFAR-10, and FMNIST datasets. Our empirical results demonstrate the robustness of our method as it outperforms or performs comparably to other state-of-the-art (SOTA) methods. In addition, we evaluated the proposed method on the curated dataset, where the noise type and level of various annotators depend on the input image style. We show that our approach performs well and is adept at learning annotators' confusion. Moreover, we demonstrate how our model is more confident in predicting GT than other baselines. Finally, we assess our approach for segmentation problem and showcase its effectiveness with experiments.
translated by 谷歌翻译
Recent advances in upper limb prostheses have led to significant improvements in the number of movements provided by the robotic limb. However, the method for controlling multiple degrees of freedom via user-generated signals remains challenging. To address this issue, various machine learning controllers have been developed to better predict movement intent. As these controllers become more intelligent and take on more autonomy in the system, the traditional approach of representing the human-machine interface as a human controlling a tool becomes limiting. One possible approach to improve the understanding of these interfaces is to model them as collaborative, multi-agent systems through the lens of joint action. The field of joint action has been commonly applied to two human partners who are trying to work jointly together to achieve a task, such as singing or moving a table together, by effecting coordinated change in their shared environment. In this work, we compare different prosthesis controllers (proportional electromyography with sequential switching, pattern recognition, and adaptive switching) in terms of how they present the hallmarks of joint action. The results of the comparison lead to a new perspective for understanding how existing myoelectric systems relate to each other, along with recommendations for how to improve these systems by increasing the collaborative communication between each partner.
translated by 谷歌翻译
Nowadays, the current neural network models of dialogue generation(chatbots) show great promise for generating answers for chatty agents. But they are short-sighted in that they predict utterances one at a time while disregarding their impact on future outcomes. Modelling a dialogue's future direction is critical for generating coherent, interesting dialogues, a need that has led traditional NLP dialogue models that rely on reinforcement learning. In this article, we explain how to combine these objectives by using deep reinforcement learning to predict future rewards in chatbot dialogue. The model simulates conversations between two virtual agents, with policy gradient methods used to reward sequences that exhibit three useful conversational characteristics: the flow of informality, coherence, and simplicity of response (related to forward-looking function). We assess our model based on its diversity, length, and complexity with regard to humans. In dialogue simulation, evaluations demonstrated that the proposed model generates more interactive responses and encourages a more sustained successful conversation. This work commemorates a preliminary step toward developing a neural conversational model based on the long-term success of dialogues.
translated by 谷歌翻译
In this work, we introduce a hypergraph representation learning framework called Hypergraph Neural Networks (HNN) that jointly learns hyperedge embeddings along with a set of hyperedge-dependent embeddings for each node in the hypergraph. HNN derives multiple embeddings per node in the hypergraph where each embedding for a node is dependent on a specific hyperedge of that node. Notably, HNN is accurate, data-efficient, flexible with many interchangeable components, and useful for a wide range of hypergraph learning tasks. We evaluate the effectiveness of the HNN framework for hyperedge prediction and hypergraph node classification. We find that HNN achieves an overall mean gain of 7.72% and 11.37% across all baseline models and graphs for hyperedge prediction and hypergraph node classification, respectively.
translated by 谷歌翻译
A "heart attack" or myocardial infarction (MI), occurs when an artery supplying blood to the heart is abruptly occluded. The "gold standard" method for imaging MI is Cardiovascular Magnetic Resonance Imaging (MRI), with intravenously administered gadolinium-based contrast (late gadolinium enhancement). However, no "gold standard" fully automated method for the quantification of MI exists. In this work, we propose an end-to-end fully automatic system (MyI-Net) for the detection and quantification of MI in MRI images. This has the potential to reduce the uncertainty due to the technical variability across labs and inherent problems of the data and labels. Our system consists of four processing stages designed to maintain the flow of information across scales. First, features from raw MRI images are generated using feature extractors built on ResNet and MoblieNet architectures. This is followed by the Atrous Spatial Pyramid Pooling (ASPP) to produce spatial information at different scales to preserve more image context. High-level features from ASPP and initial low-level features are concatenated at the third stage and then passed to the fourth stage where spatial information is recovered via up-sampling to produce final image segmentation output into: i) background, ii) heart muscle, iii) blood and iv) scar areas. New models were compared with state-of-art models and manual quantification. Our models showed favorable performance in global segmentation and scar tissue detection relative to state-of-the-art work, including a four-fold better performance in matching scar pixels to contours produced by clinicians.
translated by 谷歌翻译
Increasing popularity of deep-learning-powered applications raises the issue of vulnerability of neural networks to adversarial attacks. In other words, hardly perceptible changes in input data lead to the output error in neural network hindering their utilization in applications that involve decisions with security risks. A number of previous works have already thoroughly evaluated the most commonly used configuration - Convolutional Neural Networks (CNNs) against different types of adversarial attacks. Moreover, recent works demonstrated transferability of the some adversarial examples across different neural network models. This paper studied robustness of the new emerging models such as SpinalNet-based neural networks and Compact Convolutional Transformers (CCT) on image classification problem of CIFAR-10 dataset. Each architecture was tested against four White-box attacks and three Black-box attacks. Unlike VGG and SpinalNet models, attention-based CCT configuration demonstrated large span between strong robustness and vulnerability to adversarial examples. Eventually, the study of transferability between VGG, VGG-inspired SpinalNet and pretrained CCT 7/3x1 models was conducted. It was shown that despite high effectiveness of the attack on the certain individual model, this does not guarantee the transferability to other models.
translated by 谷歌翻译
Human Activity Recognition (HAR) is an emerging technology with several applications in surveillance, security, and healthcare sectors. Noninvasive HAR systems based on Wi-Fi Channel State Information (CSI) signals can be developed leveraging the quick growth of ubiquitous Wi-Fi technologies, and the correlation between CSI dynamics and body motions. In this paper, we propose Principal Component-based Wavelet Convolutional Neural Network (or PCWCNN) -- a novel approach that offers robustness and efficiency for practical real-time applications. Our proposed method incorporates two efficient preprocessing algorithms -- the Principal Component Analysis (PCA) and the Discrete Wavelet Transform (DWT). We employ an adaptive activity segmentation algorithm that is accurate and computationally light. Additionally, we used the Wavelet CNN for classification, which is a deep convolutional network analogous to the well-studied ResNet and DenseNet networks. We empirically show that our proposed PCWCNN model performs very well on a real dataset, outperforming existing approaches.
translated by 谷歌翻译